How to Drive Steel Sheet Piles

American Piledriving Equipment, Inc.

APE Pile Driving School

What Is a Steel Sheet Pile?

Sheets of Steel plates that interconnect.

Examples

Examples

Examples

What Do They Look Like?

Various Types at a Glance

Job Examples

Sheet Pile Terminology: Section Data: Name

Section Name: Manufacturer's Designation to identify the section. Example: PZ-27

PZ-27 means Z-Shaped with 27 pounds Per square foot.

Job Examples

Germany, England, Japan, USA, Korea, Luxemburg, Etc.

Sheet Pile Terminology: Shape: 4 Basic Types 1. Z-type (Z)

Used for Intermediate to Deep Wall Construction

Sheet Pile Terminology: Shape: 4 Basic Types 2. U-type (U)

Used For Applications Similar to Z-Piles

Sheet Pile Terminology: Shape: 4 Basic Types 3. Flat Sheets (F)

Used to form Cellular Cofferdams

Flat Sheets

Sheet Pile Terminology: Shape: 4 Basic Types 4. Arch (A)

Used For Shallower Wall Construction. Also Comes in Light Weights or Gauges.

Types of Steel Sheet Piles: Trench Shoring HOESH

Note: No interlocks

PZ-27

Ball and Socket Type

Positive Points:

- Easy to thread. Hangs up less.
- Pile Crews Desire This Type of Interlock
- Super Rugged Interlock
- Great for Repeated Use.
- Easy to Drive because Interlock displaces less soil

Double Jaw

Positive Points:

- Proven Track Record
- Tight interlocks-Less Seepage
- Strong for repeated use.
- Good in Hard Driving Situations
- Small profile Interlocks

Single Jaw

- Negative:
- Less Swing
- Hangs up more
- Holds up good but not as good as the ball and socket type interlock.

Double Hook

Positive Points:

Proven Track Record

Negative:

Limited Swing

Cold Rolled Hook and Grip

Avoid if hard driving

Avoid if sealing out water

Thumb and Finger- Three Point Contact

Thumb and Finger Interlock is Used on Flat Sheet Piles. Interlock is rated by Tension Strength. Used for Cofferdams.

Thumb and Finger- One Point Contact

Reading Sheet Pile Dimensions: Section Area

Cross-sectional area is listed as square inches per foot of wall.

Areas shown for flat piling are based on the single section only.

Reading Sheet Pile Dimensions: Nominal Width

Centerline from Interlock to Interlock

Reading Sheet Pile Dimensions: Weight

Weight of Square Foot of Wall

Reading Sheet Pile Dimensions: Wall Depth

Distance between outboard and inboard Faces

Reading Sheet Pile Dimensions: Wall Web and Flange

Reading Sheet Pile Dimensions: Moment of Inertia

Product of cross-sectional area and squared distance from a reference axis

Reading Sheet Pile Dimensions: Section Modulus

What to Consider Beyond Section Modulus and Moment of Inertia.

Choosing The Right Sheet Pile for The Job Based on Driving Conditions and Dewatering Requirements.
Understanding the Difference Between <u>Hot Rolled</u> and <u>Cold Formed.</u>

Sheet Pile Terminology: Hot Rolled (HR)

Hot Rolled Steel Sheets Good Points:

- Proven track record since early 1900's
- Tight interlock for good water seal

- Proven procedures to reduce seepage based on 100 years of data
- Less interlock slop reduces tendency to lean and reduces template criteria
- Strong interlock for hard driving
- •Can be made with thick (up to ¾ inch) wall for super hard driving
- Web layout superior to cold formed (for hammer energy transfer)
- More elastic at angle area (cold forming process reduces elasticity)
- Excellent for reuse due to strong interlocks
- Available for rent and rental/purchase

Hot Rolled Steel Sheets Bad Points:

- Costs more than cold formed
- Restricted lengths 25 feet to 60'
- Lengths restricted to 5' intervals
- Special lengths are special order
- May weigh more per foot of wall
- May not be necessary in super soft soils

Cold Formed Steel Sheet Piles Are:

Cold Formed From Steel Sheet Rolls Called Scalp or Coils

Cold Formed Steel Sheets Good Points:

- Much Cheaper to make than hot rolled
- •Can get cut to any length and quantity
- Fast delivery and production
- 15 to 20 different shapes & thick nesses
- Good for soft driving but requires careful alignment
- Greater swing than hot rolled allows greater curves

F

Cold Formed Steel Sheets Bad Points:

•Weak interlocks

- •Cold formed sheet interlocks much larger than hot- harder to clamp*
- •Sloppy interlocks get jammed easy from soil entering
- Seepage problems
- •Brittle at bent areas due to dynamic loading when cold formed
- Interlocks fail in hard soils or when striking obstacles
- •Web is longer. Vibratory hammers will rip out tops
- Not good for jobs where sheets must be reused several times
- Not available for rent because interlock failures
- •Requires more attention when driving

Jaws on Cold Formed Interlocks

Interlock Jamming

Hot rolled sheets have tighter tolerances that keep larger particles out. Large particles cause hitch hiking of the sheets. Hitch hiking

Dynamic Loading

Bending during cold forming loads areas.

Driving Methods-Easy Driving-pitch and Drive

Examples-Soft Soils, Short Sheets

Pitch and drive

Driving Methods-other than soft

Example of Double Templates

Upper template should be substantial fraction of the pile length.

Driving Methods Gaining or Loosing

Driving Methods-Leaning Stop! Take Corrective Action.

Methods-leaning Corrections

In conjunction with the above method, the hammer can be placed off centre of the pair of piles towards the last driven piles.

When, in spite of all precautions, a lean cannot be eliminated, taper piles must be employed to correct the error.

Impact Hammers

- Things to consider:
- Heavy ram, shorter stroke
- •Ram weight should be 1.5 to 2 times the combined pile and cap weight
- Diesel hammer may be best choice
- •Leader mounted
- Good drive cap to pile fit
- Drive in shorter steps

Impact Hammers-drive Caps

Understanding Vibros

Suppressor -

Gearbox -

Clamp Device -

Vibro Suppressorrubber Springs

Vibro of Rotating Eccentrics

Paired Eccentrics

1117

Eccentric

Four Strokes of the Eccentric

1 work

2

3 work

Forces the vibro and the casing downward

Nothing happens. Each eccentric cancels other out.

Both eccentrics for vibro and casing upward

Nothing happens. Each eccentric cancels other out.

Vibro-Driver/Extractors

Eccentric moment

 $\frac{\text{Eccentric moment} = \text{distance between the center of rotation and}}{\text{the center of gravity x the total mass of the eccentric.}}$

Example of calculating eccentric moment of one eccentric:

2 times 500 equals: 1,000 inch pounds

Eccentric moment of a vibro is measurement of all eccentrics combined.

If each eccentric has 1,000 in-lbs then the vibro has a total of 2,000 in-lbs.

Some vibros Have Many Small Eccentrics to Get a Large Total Inch Pounds While Others Have Less Eccentrics That Are Bigger.

More vibrating weight Less amplitude Less vibrating weight More amplitude

Smaller Weights Means More Bearings, Shafts, Gears.

More parts

Less parts

Amplitude

 $A = 2 \times Mt$ Mv

Mt = Eccentric Moment in inch pounds

Mv = Total Vibrating Weight

A = Amplitude in inches

Vibrating weight: Mv

The vibrating weight is the sum of all

the weights of the vibrating mass.

- B: Dynamic weight (vibrating mass)
- C: Clamping device including all plates or clamps
- D: Pile weight

Vibrating mass: 6500 lb

Vibrating mass: 5000 lb

The hammer on the left has the same eccentric moment but less amplitude because the vibrating mass is heavier.

Amplitude will decrease with increase of:

- Soil resistance
- Weights, gears, shafts, hoses, motors
- Extra clamp attachments
- Anything that increases vibrating mass.

VM

EM: Eccentric Moment

VM: Vibrating Mass

VPMCPMFrequency(Vibrations Per Minute) or(Cycles Per Minute)

Frequency is the rotational speed of the vibro eccentrics.

Drive Force (Dynamic Force)

(Cycles per minute)

Drive Force =

Eccentric Moment x 0.142 x Frequency squared

1,000,000

Example:

Moment: 4400 in-lb.

Frequency: 1600 Cycles per minute

4400 x 0.0142 x 1600x1600

1,000,000

= 159.94 Tons

Drive Force

How Frequency Matters

159.94 =

4400 x 0.0142 x 1100x1100

1,000,000

= 75 tons

4400 x 0.0142 x 1600x1600 1,000,000 Higher Frequency Dramatically Increases Drive Force Because Frequency is squared.

 $\frac{5208 \times 0.0142 \times 1100 \times 1100}{1,000,000} = 89 \text{ tons} \quad 159.94 = \frac{4400 \times 0.0142 \times 1600 \times 1600}{1,000,000}$

Vibro Jaws

Vibro Clampsbasic Rules

- Wait for hammer to come to speed
- Clamp in center
- Clamp always in line with pile axis
- Avoid clamping on interlocks
- •All of teeth in work
- Watch jaws and interlocks for heat
- •Do not pull or drive vibro until speed is reached
- Do not open until vibro stops moving
- Melting interlocks means jaws are also taking a beating

Jaws-watch the Interlocks Do Not Crush Interlocks

Model 400 on Sheets

Required The Use Of Super Vibro.

Hard

Driving

Sheet piles for Air Force missile silos.

Pile Buck Tools for Driving Sheets

This tool holds leading sheet pile to lower guide.

Stab Cat

SET UP IS FOR SINGLE OR DOUBLE SHEETS

APE Rules for Driving Sheets

1. 2.

- Never stand under foundation equipment.
- Start with piles in good condition.
- 3. Put all clamp teeth in contact with pile.
- 4. Drive in steps eight feet or less.
- 5. Keep sheets plumb.
- 6. Come up to speed before doing work.
- 7. No dancing avoid densification.
- 8. Drive past obstacles and then go back.
- 9. Backhoe on site to remove obstacles.
- 10. Lead with the ball of the sheet pile.
- 11. Probe the pile if it appears stuck.
- 12. Never rush the sheet pile foreman.
- 13. Slow and plumb and the job will get done.
- 14. Melted inner locks = piles out of plumb.
- 15. Low clamp pressure means jaw failures.
- 16. Wait for vibro to get to full speed then pull.
- 17. Don't over excavate lower the ring.
- 18. Look at the jaws during driving.
- 19. Beware of cracked or broken sheets.
- 20. In sandy soils drive faster.
- 21. In clay, amplitude is everything.
- 22. Low drive pressure means easy work.
- 23. High pressure means friction on piles.
- 24. Over 4500 psi means bigger hammer needed.
- 25. No amplitude means bigger hammer needed.
- 26. Check clamp bolts each morning.
- 27. Read the manual know your machine.
- 28. Attach whip line to pile when pulling.
- 29. Know your line pull.
- 30. Extract straight look at boom and cable.
- 31. Give boom stops some room.
- 32. Stalled engine means dirty fuel filters.
- 33. Never stand under foundation equipment.
- 34. GoAPE!

www.americanpiledriving.com

Call APE: (800) 248-8498